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We investigate the observation problems for linear systems operating in the pre- 
sence of noise not accessible to measurement [1- 33, The formuiation to be 

considered covers in a single form both the minimax game situations as well as 
certain cases of a probabilistic description of observable systems. The desired 

optimal observation operation is formed in two ways: either a priori , when 
one and the same uperatiun is selected for all possible realizations of the signal 

being observed,or a posteriori, when the operation is formulated on the 

basis of the value realized of this signal, The difference of the two observation 

methods mentioned are compared and discussed. In particular, the classes of 
functional constraints on the unknown noise and the class of optimal observation 
operations when the optimal unimprovable result is achieved, are indicated. The 
relation of the class of operations indicated with the set of linear observation 

operations is examined. The paper is closely related to the investigations in 

r4 - 73. 

1. A grforf LnBr postrtforf ~~~~tiun. We consider the ti-vector-valued 
controlled system 

dlz: / & = A (t) x -f- B (c)u + f Q), tosqt<@ P* 11 
with an r-vector-valued input function u (t)* An m-dimensional quantity y (t), acces- 
sible to measurement, is realized by the equation 

@/ / dt = c (t>x: -+ F @)y + C (t)v + H (OE, to < t < 6, sg B 0.Q 

where !j (t) is a q-vector-valued noise in the measurement channel, The coefficients 
of systems (1.1) and (1.2) are assumed continuous and the Lebesgue-integrable function 
f (Q is assumed known, The functions v (t)? % (f) belong to the sets 

V(e) = V(Jk (*)I. e (-> = 3 (v (*)) 

which depend in a known way on random functions i_~ (t)? v (t) (on the elements of 
P (q)? 1: (a)) specified on the interval ,& < I: < 6, The values LY (t), % (t) themselves 
are here assumed to be u~~own~ Let f (~1 = f (1), t &Z Ita, a-1. 

Let us describe the sets V ( - ), 3 ( l ) in detail. We denote itxP = (p : /.gpFp). 

Here; pm > 0, P is a convex set containing zero. Let P and Q be convex com- 

pacta in @“I, Rc@ (0 E P, 0 E Q)_ Further, we assume 
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processes with known distributions. We note that if functions ~)r (t), toa (t) are deter- 
ministic,then V (p (a)), E (Y (.I) 1 d f a so e ine deterministic classes of functions.In the 

stochastic version we assume that the distributions of p (t), v (t) are concentrated on 

the segments 0 < p (t) < p. (t), 0 < v (t) < v. (t), where p. (t), v. (t) are 
deterministic functions bounded on [to,+]. 

We consider methods of constructing a mapping (an “observation operation”) 

$ (Y (*I> = * (.f E R@f estimatingap -vector-valued parameter r] (fiI) = Nz (6,) 
of system (1.1) (X is a known matrix), The accuracy of the estimate is characterized 
by a nonnegative convex functional cp (x), v (0) = 0, where X ($, y) = q (6,) - 

$ (-1. 
We can estimate t] (0,) by two methods. The first method consists in choosing the 

mapping * f - ) . rn advance as one and the same for all possible realizations y (+). 
The parameter q (6,) is estimated in accordance with the criterion 

fro = max,(.) M [e (p (e), Y f.), I# (e)) / y = 9 (.)I-= min+(.) (1.3) 

a (P (9, v (9, $ (9) = maxO,c u, (x> 

under the condition 

‘x (111 (-1, y (*)I = (9 (y( +>) - rl (%))lEo,Z=O=o (1.4) 

Here in (1.3) the conditional mean is taken over all p. (*), v (s) consistent with y (e) 
(the given operation is explained in detail in Sect. 5 below), and the maximum is then 
computed over all realizations y ( .> which are admissible by the system (1. I.), (1.2) 

for all possible Cl < p (t) & p. (t)? 0 < v (t) < v. (t). Wecallrelations(l.3),(1~4) 
the conditions of the problem of a priori observation of parameter q (et) of system 
(1.1) with respect to the signal y (t) of (1.2). Thus, in the indicated formulatton all 
possible realizations 9 (a) are “played through” in advance, after which 9” is selected 

so as to ensure a certain guaranteed result. In particular, if p, ( *), v ( .) are nonrandom, 

then (1.3) turns into the following condition: 

eQ = m%(.ie fP (,), v (*), $(s)), TE) (*) E y (1.5) 

Principles are presented in [4 - S] for constructing control problems with parameter- 
constrained trajectories, connected with the problem being discussed bv duality relations. 

We turn to the second observation method. Suppose that the signal ?J (t) = ?/* (t) 

has been realized on the interval it,, 61. We now construct the mapping (the “observa- 
tion operation”) with due regard to the fact that the realization y* (s) is already known. 
Therefore, among the arguments of 11) we also include the function y* (T). We estimate 

rl (6,) in accordance with the criterion (I$* (-) = 41 (y (.), y* (.))) 

?* = nr ii?* (p (a), Y (.), q* (-)) / y = y* (-)I = min,,* 0.6) 

e* (p (*). 1’ (-f, $8 (.)) = IrlXi,,E q (x) 

91” E yf*, (11 f.), E (.)} C. FV @f* (.>, p (*f, IJ i*)) 

Here Y* is the class of admissible functionals realizing the observation operation ; 

by*(Y* (.)I El, (*), 2, (-)I consists, correspondingly, of those and only those functions 
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u (,.I, E (a) withvaluesin V(p (e)),E(v (a)) which are consistent with signal Y* (*) 

(i. e. those which together with the vector y* (9) and some 5 (,@) can generate by vir- 
tue of (1. l), (1.2) the realization y* (e)). The conditional mean in (1.6) is computed 
from the a posteriori distributionofthe functions p (*),Y (*) for y = y” (*). 
Relations (1.6) are called the conditions of the problem of a posterior i observation 

of parameter q (6,) of system (1.1) with respect to the signal y” (t) from (1.2). In 
particular, if p (s), 21 (.> are nonrandom, then (1.6) turns into the following condition: 

E” = min+* e* (P (9, v (9, $*I, 9* E Y* 0.7) 

Below, the class Y of mappings 4 ( .) will consist of the linear operations 9 (y (a>) = 

; w (. ), y (e)), continuous on some Banacb space 3 containing the set of all possible 
realizations y ( +). Here the rows of the ( m x p )-matrix w ( a) belong to space B* (I 
Space R is constructed below. The class Y* of mappings $I (y (= j, y* (*)I is defined 
with the aid of linear operations of the form 

I#* (a) = 9 (Y (*), ?I* (-1) = (w (* I Y” (*)), Y (*>> 

where y (+) E B and the element w (- / y* (-)) E B* depends upon the realiza- 
tions y* ( .) . We note that the mapping it) (Y (. ), y* ( .)) from B into R(p) is now 

not necessarily linear. Additional constraints on 9 (y (+), y* (.)) can, as in the a 

pr i or i problem, be included in the requirements on w (. / y* ( - )) E w. 
Below we show that the consideration of only the above-described classes Up and w* 

is justified by the fact that unimprovable estimates of the parameter r~ (6,) can be achi- 
eved even in these classes (if space 3 and set W are chosen properly). Everywhere 

below we assume 6, = 6. The extension of the results to the case 6, ( 6 is standard. 

Note 1.1. The “non-bias condition” (1.4). signifying that II, (y (s)) = x (6) pre- 

cisely for v 5 0, E E 6, is, as will be shown below, necessary for optimality in the sense 

of criterion(1.3)((1.6) for the operation $ (y (e)) (9 (y (.), y* (a))). 
Note 1.2. From the sense of the problems being considered the set IV* (y* (s), 

P (*)v Y (+)) of possible noise {V (e), E (.)} compatible with the signal y+ (.) realized, 

is necessarily nonempty, 

2. Solution of the A pr f or f obmvatfon problem, Let X (t, a), Y f t, Z) be the 
normed fundamental matrices of the systems x’ = AZ, y’ = Fy, respectively. We 
have 

8 

ztt, 61 =f Y(4 %fGmXCL+)a, i?(t) = iztl, EJfm4 
t t 

We denote z (t) = y (t) - Y (t, S) y (6) -I- g (t). Taking (1.4) into account,after 
standard calculations we have 

X(%(*J* Y(*)J = X(W(*), v(*)l E(e)> = Cw(-f, z(e)> = (2.2) 
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j w(t)Z(t, 6)dt = --iv (2.3) 
0 

The set of solutions of (2.3) in class B* is denoted as w*. Further on, we obtain 

a (~(a), v(e), q(e)) - E(P (e), v(e), w(m)) = max,E’P(x(w (e), (2.4) 

y(*), E(*))) = SUPa maxu,k2{(a, x(w!.), u(e), t(m))> - v* (41 

a E R(P) 

‘p* (4 = SUPP {(a, P> - cp (P)) 

2, (*> E JJ (p (*I)7 E (*) E E(v (*)I 

Here V* (a) is a convex function adjoint to cp (p), p E R(P) [S]. In particular, if 

cp (p) = max, (p, a), a E A*, i.e. CQ (p) = p (p; A*) is the support function 

of convex set A *, then (2.4) is transformed to the equality 

E (P (a), v (e), w (e)) = max, max,, 5 {(a, x (w (a), 2, (e), E (.)))1. (2.5) 

a E A*, 21 (.) E v (P (a)), E (.) E z(v (a)) 

In the general case we have 

c (c1 (*), v (.)I w (*)) = SuPa {P (4 (G aw (*)) H (t); E (v (e))) + (2.6) 

P (s (2, a w (*)) B (t) - 4 (r, aw (*)) C(t); v (P (a)) - ‘p* (a)} 
a E l?(P) 

Here s (t, aw (m)), q (t, aw (*)) are, respectively the n- and m-vector-valued 
solutions of the system 

a’= -sA(t) +qG(t), q’= -qF(t) +aw(t) 

s (to) = 0, q (to) = 0 

p (2) ( a); Q) is the support functional of set 0 (e), i. e. 

P (h (*); Q) = SUP, <h t-1, q (.>>, q (.> E Q 

Finally, we have 

(2.7) 

f(P( .), v(e), w(m), a) = {“s ~V(~~P~4~~, cw ( * )) fY (Q a + 
(2.8) 

P (4 P (s (t9 w+))B(t)~q(t,c~4W%); P)]dt--*(a)) 

E(P(*), V(*)W(*)) = sUPaf(P(.)> V(e), w(e), a>, aEkP’ 
(2.9) 

E” = inf, max,(.)Me (CL (( .), v (.), w(e)), w (.) E W, = W jJ WH 
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Here ,WH is determined from (2.3), while w is given bv the conditions of the problem, 
If A* is a unit sphere in the finite-dimensional space X (A* = {a: 11 a ]I < I} ) 
and, consequently, 9, (p) = 11 pu* ( h t e norm of p in the metric of X*), using (2.8) 
and the results in Part 3 of [S], we obtain 

8 

e’(p(.), v(e), w(w)) = max, t!i lv(d)~(p(t, aw(4)fl(t); Q(a))+ (2.10) 
to 

~(t)P(S(E,aw(.))B(t)-_q(t,aw(~))C(t); Pj@ @cc[I=f) 

We note three special cases of the problem 

1) Let p = 1, rp (I) = 1 i I,then 

@ (w (*)I = max,(.) Me (p (*), y (*), 2J.J (*N = 

f (&I (*), To (*),w(*), 11, VP* (If = 0 

2) Let q (I) = 11 1 1, Y (t) E 0, p (t) = p be a random quantity, then 

Q(w(*)) = max, f (~16~0, w (a), 4, II a II * = 1 
Analogously, if p (t) zz 0, Y (t) = v is a random quantity, then 

@ fw (-)I = maxc,f(O, yoI w(s), 4, IIail* =i 

3) Let p ($1, y (4 not be random, then 

CD (w (*)I = e (t-l (-1, v (*I, w (*I) 

The space B of m-vector-valued functions z* ( .) is chosen either in the form 

3 = Corn (t3, *I, where the index k depends only on the actual structure of system 
(X,1),(1.2), or in the form B = LJrn), Q -( > 1. We note that the lower bound in (2.9) 
is automati~lly reached if set W is weakly compact in B. 

3. Exact a posteriori estimate. Suppose that a realization y* ( *) of signal 
y (t), observed relative to system (1. l), (1. a), is known. We derive an exact description 
of the region X (y* (+), p ( s), v (*)) of those vectors 5 which are consistent with 

y* ( *) when 2, ( -) E ir (p (a)), E ( 0) EE 3 (V ( + )), assuming that the functions 
p (s), z1 (s) are deterministic. In other words, we find all those vectors z* for each of 

which we can find a pair d ( - ) E V (p ( a)), F” (0 ) G E (v ( * )) such that (1. I), (1.2) 
has the function y (t) = y” (t) as its solution(for f (8) = 5*, tj (6) = !j* (fi), 
n = VI f.), E = E* (‘I). We denote 

T, 3 = f’l’ ( l ), p (t) = (t) 2 (t, S) 2 

T,v(.)=@(.), f@‘(t) = j(- Y(t,6)C(5)+Z(t,6)B(6))v(~)hs 

Here Z’,, T,, T, are continuous linear operators from IF), La(r), Lp(@) ,respectively, 
into Cfmf, to < t < 6. According to (2.1) we have 
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z* (-) = - T,x + T,v (.) + T, E (-) (3.1) 

Here Z* (a) is connected with y* (e) in the same way as z (t) with $/ (t), and is deter- 

mined completely by specifying the pair {y* (m), f (s)}. In accordance with this we 
shall consider the quantity z* (=) instead of I/* (e) m all the subsequent functional 

relations. The reverse transition from z* (*) to y* (a) is effected in standard fashion. 
Therefore, we shall not clarify this in what follows. 

The set X (z* (e), p (-), v (.)) consists of those and only those vectors x for which 
(3.1) is solvable in the class V (EL (a)), 3 (Y ( .)). Following [7, 91, we obtain the 

following assertion ((A (a), h (e)) is a continuous linear functional on B, h_ E B, 
A, (.) E B*, T” is the operator adjoint to T). 

Lemma 3.1. In order that x G X (z* (-), p (-), v (e)), it is necessary and 
sufficient that the inequality 

iT *A (a),~> < SUP~,E 9 (A (.)J u(s) E (.)) (3.2) 

v (*) E.Fr(P (*)), E (*) E E (v (*)) 

$ (h (a), v (a), E (.)) = (T,*h (.), v(m); + (T,* h (.): r; (.)1 + 

(A (*), z” (*)> 

be fulfilled for any k (e) E B* . 
Lemma 3.2. The set X (z* (-), EC (-), v (e)) is convex and closed. 
This property follows from formula (3.2). 

Let L = {I: 3 h (-) E B*, T1* h (e) = 1, 1 E Rcn)}. Set L is a subspace of 
Rcn). From (3.2) we now conclude the validity of the next assertion. 

Lemma 3.3. x E X (,z* (e), p (-), v (-)) if and only if for any Z E L 

(1, x) s cpo (Z) (3.3) 

cpo (Z) = inf {p (T,*h (.); V(p (.))) + p (T,*h (-); E(v (a))) f (3.4) 

0 (.), z* (*),I 

over all 3, (0) E I\ (I) = {a (*): T,* h (e) = 1). 
We can extend the definition of the function zpo (1) to the set L, = R(n) \ L 

by setting cpo (I) = 00, if 1 FE L,. 
Le m ma 3.4. The function To (Z), Z E Z?(n) is convex and positive-homogeneous. 
These properties follow from the definition of cpo (1). Applying the results of Sect. 

13 of [8], from formula (3.3) and Lemma 3.4 we conclude 
Lemma 3. 5. The formula 

cpo (I) = p (Z; X (z* (-), p (.)t v (e))), Z E a(“) 

is valid. 
The function p (I; X (z* (.), p (e), v (.))) is uniformly bounded for all 

ZE S,(L) = {ZE L: (I, Z) = 1) 

The uniform boundedness of p (1; X (z* (e), p (a), v (a))) on s, (L) follows from 
the analogous property for To (Z) . We note that the following representation of the 

vectors: J: = x o + x1 follows from Lemma 3. 5 ; moreover, 
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The set XL (z* (-1, j-k f*f, v f*>) is a convex compact~m in .Rcn) of dimension n, = 
E - a,, where ns = dim ES is the dimension of &I, n, r= dim f, is the dimension 
af f;. Note that if G = const, then p (I; X fz* (e), p (e), v (.))f = 0 when 1”G= 
0 (the prime denotes ~a~s~sltjo~~. 

The special case L = R(n) is int~esting. It occurs if and only if the equation 
T,* h (*) = 1 is solvable with respect to h { - ) for all 6, But the Xast condition 
exactIy expresses the requirement of complete observability of system (1. I>, (x,2) on 
the interval I&,, sJ when u -_= I), S$ _Z 0 fl - 3, lo] (or, in other words, the require- 
ment that candition (1.4) be fulfilled if we assume that 

Jr (2 (*H=<h C-)7 z f*)> jE=W=l, 
see Mote I+ 11 S The next assertion is obtained by standard methods of CONW theory 

(for example, see [ 1) 1 0] ). 
Lemma 3.6. In order that the equation T,* A ( .) =L: I be solvable for any 2 E 

En) (i. e, that the system (I. 1). (1.2). 5 s 0, v s 0 be completely observable an 
the interval ftor ,@I), it is necessary and sufficient that the form 

~~(~~~~~,~~~~~, ,P)dt)2- E’H? (3,s) 
ia 

be positiws definite. In the s~t~o~a~ case system (1.1), (1, ~2) is ~mp~etely obs~abIe 
if and only if the rank of the matrix Q1 = ff), DA,, ...I DA?-‘], where 

13 = ~~,~~~~~~ 
A0 

AZ = G F 
equals Iz + m II i J 

Corollary 3.1 1 In order that the convex and closed set X (z* (*), p (a), Y (a)) 
be bounded, it is necessary and sufficient that form t’ HI be positive definite. 

The vectors t E & are called observable directions, 
Let Z (*) = z* (.> + T,X fz* f-f? p (+f, Y (-))t where 27,X ~st~e~rnageo~ 

set X under mapping T,. By the symbol W f.) = fzt (-1, E (a)) “we denote the 
preimage of set Z (.) in Lzfrf X A,@) under the mapping 2’ {V (*I, g( * )j=T,a (a) -!- 
T& (-). Let W* (+) == W (-) fl (V(p (-)) X E (y f.))). The ~ojcctians of 

W” (a) = W” (z* (*I, P i*f, 11 (*I> onto .&(‘) and _&(@ are denoted, respectively, 

by V* (z* (9, f” (9, v (9) and E* (z* (o), p (a), Y (e)). The assertion follaws 
from the convexity and closedness of X (2” ( .), p ( * ), v ( - ); and also from the bound- 
edness oft& sets ‘v (p (e))$ E (Y (*)) a 

Lemma 3,?. The set W* (z* f + It p. (*jr Y f - )) is convex anal weakly compact 
in &W X L$~. 
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2, ( * )) and the observable direction I; then $ (h ( . ), ~9 ( . ), g,l ( . )) = k > _ m 
on the set h (e) E h (1). 

The boundedness of I# (3, ( . ), 29 (e), E1 (.)) over all h (a) E A (I) follows 
from the observability of direction z and can be verified by a direct calculation. The 

constancy of the functional I$ (h (m), or (a), E1 (s)) on the affine set {a (.) E h (1)) 
follows from its linearity in x (e). From Lemmas 3.5.3.7.3.8, and from the fact that 

when {u’ (q), El (e)} E W* (z* (.), p (.), Y (e)) we have 

inf,~(.j$ (1 (e), 2+ (a), El (a)) = 00 (0 == - 00 7 h (*) E A (1) 

for any Z E L (the proof of this fact is analogous to the one in [7]), we conclude, 

using notation (2. ‘7), that the assertion is valid. 
Lemma 3.9. Let 1 E L (1 is an observable direction). Then for arbitrary 

h (s) E h (1) we have 

P (k x (z* (*), CL (*), v (a))) = 0 (.)t s* (*)> + (3.6) 

P (s (t; h (*))*B (t) - 9 (t, 3, (*)) c (Q, - q (t, h (*)) H (0; 

w* cz* (*), P (*), V(‘))) 

Let us find an exact estimate of parameter q (6) for fixed p (m) , 2: ( - ). We con- 
sider the set N* (.a* (e), p (a), v (+)) = NX (z* (-), p (-),v (e)). Here 

fl* (z* (.), p (a), v (.)) = N * (a) . is t e re ion of values of ‘1 (6), consistent h g’ 
with the signal Z* ( e). Let us find the point v” (6) called the “Chebyshev center” of 
set N* (.). By definition we have (q E N* (*)I 

E* = ma% II q - q. j/ = mine maxn 11 q - 5 11, 5 E IW) 

Then for deterministic p (. ), v (. ) we obtain that E* is a solution of problem (1.7) 

with v (x) = 11 x 11. It is clear that ~1~ = q” (iv” (.)) = q” (N” (2” (.), l_t (.), 

1: (s))). It now remains to set 9” (z* (s), z* (s)) = 71’ (N* (Z* (e), p (e), 2; (e))). 
As we can convince ourselves (since under the conditions being considered a* is an 
unimprovable a posterior i estimate of the error in the determination of parameter 
q (6), and this is true by construction!), $,” (z* (e), Z* (a)) is the solution of prob- 

lem (1.7). If ‘p (X) is an arbitrary nonnegative convex functional, then q” is the SO- 

called ” v-center” ofthe set N* (-), i.e. (q~N*(e)) 

e* = maxn ‘p (q - q”) = mint maxn cp (q - g), 5 E Mn) (3.7) 

Noting that the formula 

P (a; N” (a>) = P (UN; x (z* (*>, CL (.)I v (*>N (3.8) 

is valid, we find (a, 5 E R(p)) 

a* = miq supGl {p (q N* (.)) - < b,c > - ‘P* (a)} (3.9) 

In particular, if cp (2) = 11 X I/, from (3.7) we obtain 

a* = min;max,{p (a; N* (e)) - (a, I;)}, 5 E R(J’), jj a I/ * < 1 (3.10) 

Summing up what we have said, we obtain the following assertion. 
Theorem 3.1. Let I_L ( +), v ( -) be given functions. The solution of determin- 
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istic problem (1.7) is obtained by the o~~a~i~~ 9 (z* (.>, z* (.)f- ~1’ (!?* ( l )), 
where q” is an element of functional (3.9) and (3, la), extremal with respect td 5; com- 
putable from realization z* ( * f in accordance with formulas (3.7) - (3.1 o), (3.4). 
The number E* is the estimate, unimprovabl~ with respect to the functional rp @,,I = 
// x 11 , of the deviation X, = 3 (@) - q0 of the realized value q (0) from q>, 

Corollary 3, 2. Let q (19) = rz‘x (6) be a scalar quantity and let rp (x) = 

fidf. Then r10 
= l/s Ip (4.; N” (“1) - p (- 1; N” (*))I (3.11) 

In fact, if N is an &‘-vector, then the set N* (-1 is a segment whose endpoints are 
the numbers a = - p (--1; N* (.)), b = p (1; N” (+)I. Then from (3.10) we 
find n* =r fb - a) / 2 = min, max (b - q, - a f 6). Here the minimum is 
reached when b - ?t = 9 - o, Le. ‘Q5 = (d -!- b) i 2. The right-hand side of 
(3.11) is now obtained by formula (3.Q. 

Let us assume the functions p ( *>, Y (*) are random. The distributions of the quan- 
tities P (*) and v (.) are now a posteriori and depend on z* (*).Without dwel- 
ling on the computation of these distributions, we note that solution (1.6) is determined 
by the formula 

CR = min-, M I(max, cp (11 - 5); 11 ES N* (~1) I2 = z* (a)1 (3.12) 

5 -5 &Pf 

i. e. 

E* I= mint iIif lsup, (p (a; N* (a)) - :‘a, 5, - fp” (CE)) I z = z* (*It 

and 9’ (z* (*)* Z* f*>) = q” (z* (.))t where 7” (z* f-J) is an element of (3.12), 
extremal with respect to c Fs Rtpt . 

Theorem 3.2. Let P (*I, v f+) be random processes whose a posteriori 
distributions for given Z* (-1 are known. Then the operation 9’ fz* (.jt .z* (.)I, 
solving problem (1. !5)* is determined by the equality 11” (z* (.), z*( .)) = q” (z* (a)), 
where qcl (2” (.)) is an element of (3. ll), extremal with respect to f; . The optimal 
error E* is found from formulas (3.11). (3,8), (3.6). (3.4). 

Corollary 3.3, Let cp fx) = 11 x !\, Th en condition (3.12) takes the form 

E* ‘= mint M [sup, (p (a; N* (*>> - (a, c)) I z = z* (*)I (3.13) 

5 e Iv), 11 a 11 * < j 

Corollary 3, 4. Let rt fS) = n’ 5 (8) be a scalar quantity and let g, fx) = 
f X 1. Then 

$* (2” (*I, s* (=)) = lls M I(P ffi; x Iz* (*I, P (*>t v f*f)) - 

p (-- n; x (i* (-1, EL (*>, v (*>>)I) / z = z* (*)I 

In fact,the vectors {a (E> = p t-1; N* (+>>, b(E) = p (1; N* (S>>] be 
random with an a poster ior i distribution function P (a. my formula (3.13) we 
obtain ca 

e* = min, .cI max P(E) -- % rl - a(E))] d/q (ES, 11 !f P 
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We denote m 

a” = 
s a @> rJF (G 

--m --m 
The corollary’s assertion then follows from the trivial inequality 

valid for any 9. 

4. A posteriori eatimste by bounded operations, Let us consider system (1.1). 
(1.2) and problem (1.7) by now assuming that the (m X p )-matrix functions w (a / 
Z* (a)) E W, where w is a convex set in the ( 992 X p )-vector space B* (adjoint 

to Banach space B), is closed in the weak *-topology. We assume the functions p (*), 

v (a) as fixed. At first let there be given an ( m X p )-matrix function w f .) E 
w 0 it4 (I) = w fl), h w ere I is an observable direction. From Eq,(3.1) we obtain the 

equality 
(Tl”w (s), z) = (T,” w (.), u(e)) + (Ts* w (.), E (e), -_(w (*h z* (*>) 

valid for any (2, u (*), ri, (*)I consistent with Z* (a), i.e. (4.1) 

As a result we have 

Hence we find 
(1, 2) < inf,@, (w (s), p (a),~ (.), z* (*I), w (*) E W (I) (4.21 

and, analogously, 

(E, z> > SUPlo @_ (w (*), v (a>, v (*I, z* (*I), w (*) E ‘liv (4 (4.3) 

@_ (w (*f, CG (*I, y t.17 z* (*)I = (w tab z* (+I> + 

P (-- T,” w (a); T’ (P (.)I> + P (-- T,* w t-h z tv (*))I 

Leg (1, z> > - inf,,,., @_(w(+), p (a), Y (-1, z* (e)), w(v) E W(E) 

Suppose that set w (1) is bounded. Then the operation inf in conditions (4.2),(4.3) 
can be replaced by min. It is important to stress that here we do not need to know the 

set W* (z* (.), p (a), y (*I> in advance in order to obtain the a poster i or i esti- 

mate, because in (4.2) the estimates are realized with respect to the noise u (*) E 

v(p(.))and E(,)eE(v(.)). 

6, Comprrlaon of a priori and A postsrlorl etiim&tefi. We first consider the 
purely deterministic case. Thus, let I_L (e), v (e) b e nonrandom. We compare the num- 

bers.$ = miu e (p (-), y !.), w (+)) over w (e) E WE and E*= e* (z* (*)) = 
min E* (p (m), v (.), w (e / z* (w))) over w (a / z* (s)) E=_ WH, namely, the observ- 

ation errors obtained by a pr i o r i and by a post er i o r i observations, respectively. 

Keeping the expression for f (l,t (. ) , Y (a), w f e), a), formulas (‘2.8), (2.9), (3.4),(3.6), 
and Lemma 3.4 in mind, we conclude 
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a 

e” = infwGwH supa ii v (f) P (Q (t, auJ ( .)I H (Q Q) & + (5.1) 

8 to 

sup,(p(aN; X(0, p(-), v(e))) -cp*(a)) = &S(O), acdP) 
Note that the set X (0, C, (e), Y (a)) is sy mmetric with respect to the origin (this fol- 

lows from the corresponding definition and symmetry of sets P, Q). Therefore, (5.1) 
admits the following interpretatioa 

Lemma 5.1. Let p (.), Y (s) be given deterministic functions. The error e3 of 

an a priori observation of parameter 71 (6) with respect to signal y (*) in (1.1),(U) 

is not less than E* (0) , the ~im~ovable error estimate for an a posterior i obser- 

vation of parameter q (8) with respect to signal z* ( . ) c 0 in (1.1). (1.2). 

By direct calculation we convince ourselves that if a is a scalar and cp (x) = ) x 1, 
then a0 = E* (0). 

We arrive at the next result by taking into account that the error E’ of a pr i or i 
observation is achieved by a linear operation (IL? (.), z (.)), and that, on the basis of 

Lemma 5.1, it cannot be improved. 
Corollary 5.1. If a is a scalar and cp (II) = 1x1, then the unim~ovable a 

pr i o r i estimate is achieved by the linear operation <w ( .), z (+)) satisfying condi- 

tions (2.6), (2.7) and the moment equalities (2.3). 
Let us go on to compare E* (0) and E* (z* (.)), to do this we compare W* (0, 

EL (*), Y (*)) with Tiv (z* (.), p (m), v (s)). We denote the m-dimensional space 

spanned by the row-vectors of matrix 2 (t, 19) by the symbol Ii”. (If”’ = {h (t): 

h (t) = Z (t, 6) 2 for some I E R(“))). Then from formula (3.1) we conclude 

w* (0, P (*It v f.)) = {U (*), E (*>: Tsu (*> + T& (a) E H”‘} (5.21 

u (*) E -V (P (*))1 E (*I E E (v (*)I 

and, analogously, un general form, for these same classes 

I+‘* (z* (a), ~1 (.I, v (.)) = {V (.), E (.): T, u (a) + T, E (.) - (5.3) 
z* (*) E H”“} 

We shall treat the functions z* (.) as elements of space Ly,“‘, i. e. we shall assume 
B = Lkm,m’ (see Sect. 3). Then, also H* E &fm)_ Let Him denote the orthogonal com- 

plement of H” in .Limm’. Any element h (*) E Lim”l can now be represented in the 

form h (-1 = th (.)I0 + (h (*))i, where (h (.)),, E H”,, (h ( e))1 E Hlm. It can be 

verified that any pair {v (.), t (.)} E I#‘* (z* (.), lo (.), v (.)) is representable 
in the form 

u (*) = v” (*) + iJ * (*), 5 (*) = Y (*) + %* (*) (5.4) 

where the element {$ (s), p (e)) E IV* (0, ~,s (.), v f.)) depends.in genera&on 

(y (-1, 5 t->}t d h 1 an t e e ement {u* (*), E* (+)I E IV* (z* (+), p (.), v (s)) is 

fixed (i. e, does not now depend on (u (*), E (*)I ). Then 

w* (s* (*>, /JJ (*), 1’ (*>> = M/” (0, p (*), v (*) / z* (a)) + (5.5) 

w* (s* (*)1 CL (-17 v (-1) 
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Here w” (0, E_” (s), Y (e) / z* (s)) = ({u” (a), EC (a))) is the set of elements 
(D” (*I, g” (*)f obtained from (5.4) and ~*(z~(*), !-t (*), V (* 1) ‘(u*(*), E*(*)}. 
It is clear that WC (0,~ (9),v (-) fz* (.)) c W* (0, Al, (e), Y (*)) We denote 

Tzv" (-) + T&* (*) = f" (*>, f*(*) = (f" (*))o + u* ('))I (5.6) 

Taking the structure of set w” (0, pi (+), v (.) / z* (.)) ,element f* (u) in (5.6). 
and formula (3.6) in Lemma 3.9 into account, by direct calculations we convince our- 
selves of the validity of the equality 

P (I; x (z* (.>,4 l-t (*), 2, (*I>) = !A” (-1, (z* (*> + j* (*)),, + (5.7) 

P (s (tt p (.>) B (0 - 4 (C A’ (-1) C ‘i”” Q (i, h”(q)) H (2); 

W” (0, P(e), v (0) / s* (.))> 

Here h” (*) E H” is the unique solution of the equation TX” li. (s) -- l under the 

condition (A” (*), h” (s)) = min. From formulas (5.7), (3.8), (3.9), (2.6) we con- 
clude (5, ~1 E X(P)) 

E* (2” (.))=min; sup2 (p(aN; X (z* (e), p (e), v (+))) - <a, 5) - (5.8) 

q” (a)> 5< sup, (p (s (r; A;.\ (-)) B (t) - q (t, al, (*))*C (1) 

q (6 A:.~ (.)) H (2); W” (0, p (.), v (.Y .z* !s)) - v* (a)} < E* (0) 

Inequality (5. 8) and Lemma 5.1 lead to the following assertion. 

T h e o r e m 5.1. Let p ( +), v ( .) be given deterministic functions. Then the error 8O 

of a priori observation of parameter q ($1) with respect to any signal 3 (*) in (1.1). 
(1.2) is not less than the number E* (z* (+)) , the unimprovable estimate of tne error 

of a post e r i or i observation of parameter q (4) with respect to signal ?J* ( * ) 
Note 5. 1. Ifsignal Z* (.) E Hm, then the set W* (z* (.), p (.), v (a) contains a 

zero element. It then foIlows from (5.2), (5.3) that IV* (z* (. ), p (. ), Y (.)) J IV* (0, 
n f.), v (+ > ).Thus, the observation of signal Z* (.) E Hm does not give any additional 

information, permitting us to lessen the error t* (z* (-)) in comparison with the estimate 
F* (0) (and when E* (0) = F“ , even in comparison with the estimate e” of a priori 

observation). 
We now show that the unimprovable operation $ (z* (.), z* (a)) realizing the ” q - 

center” of set N* (a) (see Sect. 3) is achieved by operations oi the form 

$ (2” (*), z* (.)) =y (w (* z* (.)), z* (a), (5.9) 

In fact, the desired operation must satisfy the following moment equalities: 

(w (* /z* (a)), z* (*); = l]O, (ZU (* /z” (a)), 2 (., it)) = - N (5.10) 

If the rows ni’ of matrix N are observable directions and (z* ( .))l f 0, then on the 
basis of known results in control theory fll we conclude that problem (5.10) is solvable 

in B* for any q3, iv. 
Let z* (.) .z Hrrt, i.e. Z* (t) = % ([, 3) c, where o C- R”.The setVP’*(z*( .), 

P (*)I v (*>>’ h IS t en symmetric with respect to the origin. Hence by a direct calcula- 
tion we are convinced that the set N* (*) -2 NX (z* (*), 1~ ( .),v (.)) .-m: R(p) is sym- 

metric with respect to the point 11° = NC, which, in the given case,also gives the 
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“Chebyshev center” of set N* (a). Consequently, any operation w (- / z* (a)) satisfj- 
ing the non-bias condition (5.10) gives us, under this condition, the unimprovable esti- 

mate of q* (N* ( e)). w e note that the unimprovable estimate of q” (N* (a)) is 
achieved in the general case by operation (5.9) which, generally speaking, is not linear 

in Z* (a) EB. 
Now Iet the constraints p ( s), v (-) be probabilistic processes with known a pr i or i 

distributions. Then from (3. ll), (1.3) we have 

E* (z* (9)) = miq h!l {sup, [p (01; N* (.)) - (a, c) - (5.11) 

cp” (cqll z = z* (a)} < min-, max,(.) M {sup, Ip (a; N* (s)) - 

(a, 0 - cp* WI ! y = y (a)} < E0 

The validity of the following assertion ensues from this and from Theorem 5.1. 
Theorem 5. 2. Let p+ (. ), Y ( - ) be given random processes. Then the error 

(3.11) in the problem of a post e r i or i observation of the vector-valued parameter 
q (6) with respect to any signal ?/* (a) in (l.l), (1.2) does not exceed the error Ed 

in the corresponding a pr i or i observation problem. 

We note that the consideration of the a post er i or i observation operations is im- 
portant for describing problems of conflicting controls with incomplete information on 

the system’s position, which are close to the problems studied in monograph [12]. 

Note 5. 2. The mean in (5.11) is computed with respect to the a post e r i or i 
distribution of (11 (. ), v (+ )) [13]. The distribution is constructed in such a way that 

realizations P (v), Y (.) for which the signal z*(+) cannot be observed are excluded, 

Note 5. 3. In this paper we have assumed that a continuous measurement of sig- 

nal z* (a) is possible; however, the arguments go through also for the more general lin- 
ear “measurement operators” Mz (. ) = z* (-). The investigations in [14, 151 are devoted 

to the optimal choice of the method of measuring the signal 2 (.) . 

6. Examplea. 1) Let us consider the problem of observing the quantity q = rz (6) 
relative to the system 

Xl’ = x2, xa’ = v (6.1) 

from a signal y (t), t E LO, 61, connected with system (6.1) by the equation 

y’ = x2 + v (6.2) 

Here the noise v (t) is constrained by 1 u (t) 1 < p (p. is a random quantity with an 
a pr i or i distribution F (u)) concentrated on [0, p,, 1. 

We first estimate the error EO of a pr i or i observation. This is sufficient, according 
to the results in Sect. 5, to consider the signal y* (t) 3 0 and to compute the quantity 

s* (0, P) = E” (P). From (6.2) it follows that the set W* (0, ~2) (for fixed ,u) consists 
of the solutions of the equation U’ + ZJ = 6, constrained by the condition 1 u 1 -< p. 
Thus, W* (0, u) = {ZJ (t) : 11 (t) = ceFc, 1 c I < p}. For the quantity x2 (6) we then have 
the estimate 

rhin,(.jE w* (o,lJ) E-2; (S)l B 2: @I < maxu (.)E w*(~,:~) I--v @)I 

or Poe-@ B ~2 (6) f u~-~, consequently, 

e” (I-1) = Ice-8 = E* (0, PL) 

If p is a random quantity, then the a pr i or i estimate FO = znas M(e” (p) ig = !/ (. ) ) 
with respect to v i.1 .This maximum is achieved, for example, by the signal y(l)=txfYZ. 
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where cz = !-h cth (6 / 2), because for such a signal the conditional distribution degene- 
rates and yields the constant PLO. 

2) Let us consider problem (6. l), (6.2) of a posterior i observation of the quan- 
tity q = zz (6) with respect to the signal y* (t)=t” / 2. The set W* (y* (.), p) (p is 

fixed) is now determined by the conditions 

v tt) = cc-f + 1, - (1 + p) < c < (p - 1) ea for p* < p 4 PLO 

The set w (y* (, ), p) is empty for p < p * = th (6 / 2). For the estimate q of quan- 

tity 22 (6) we have 

rl (Y4 (-1, p) = 6 + (p + 1) (e-6 + 1) / 2 for FL* < p < po 

The error of the estimate is determined by the equality 

i5* (y* (a), p) = (1 + e-“) (p - p*) / 2 for p* < p < PO 

We immediately verify that e* (y* (.), .u) < E* (0, p). If p is a random quantity, the 
error E* is determined by the relations 

P -1 ‘( f3 (u - p*) dF (u) d P @a - fi*) < 8“ 
p*+ 

8= I+ fr8 Y” 
2 9 P= 

\ 
dF (4 

P% 
Here F (U / y+ = t2 / 2) is the a p o s t e r i or i distribution of quantity p. 
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We consider a position differential game of encounter with a target set at a spe- 

cified instant. We derive one sufficient condition by whose fulfillment the pur- 
suer ensures himself a definite qualitative result of the game. The construction 
of the first player’s strategy is based on the program construction introduced in 

[ 1 - 31. The results abut the investigations in fl - 51. 

1. We consider a conflict-controlled system described by the vector differential 
equation 

dzldt = A (t)z + f (t, u, u) 

II: [t,l = 50, u E P, VEQ 
(1.1) 

Here f (t, U, v) is a continuous n-dimensional vector-valued function, u and D are 

the player’s controls, P and Q are compacta in appropriate vector spaces. By (x}, 
we denote the vector composed from the first m (m Q n) coordinates of vector cc. By 
the problem’s hypothesis a convex bounded closed set M is given in the space {x}, . 
The first player, directing the choice of control u, strives to encounter this set by an 
instant 6 known in advance. The second player (8) obstructs this. 

Let us refine the problem statement. By the first player’s position strategy u = 
U (t, X) we mean a mapping which associates a set U (t, X) C P with each game 
position {t, x}. Any absolutely continuous function J: [tl = x [t; to, x0, [I]. being 
a Uniform limit of the Euler polygonal lines z?A [tj = z~ [t; to, zo, fij which satisfy 
the following condition 

$ e A (t) 23 + F (t, u Fil) (1.2) 

XA [toI =-: XTg 

is called a motion of system (1.1) generated by strategy TJ . Here 


